Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Trop Anim Health Prod ; 56(3): 117, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568238

RESUMO

Cereals such as triticale may contain high levels of xylans and arabinoxylans, limiting its use in diets since they act as anti-nutritional factors. The objective was to evaluate the effects of the enzyme xylanase included in triticale-based diets on productive performance, digestibility, carcass traits and meat quality in growing-finishing rabbits. Eighty rabbits (New Zealand X California breed), 35 days old, with an average initial live weight of 821 ± 26 g, were used. Twenty animals for treatment were used in each one of the fourth experimental treatments: 0, 4000, 8000 and 12,000 XU/kg of xylanase inclusion (XilaBlend 6X). The rabbits were fed ad libitum and fecal excretion was collected on days 7, 14, 21, 28 and 35 of the experimental period. At the end of the experimental period, the rabbits were slaughtered and carcass characteristics and meat quality were measured. A higher (P < 0.05) live weight was observed in rabbits fed diets with the addition of xylanase enzyme on days 4 and 7 of the experimental period. On the other hand, in the average total tract digestibility of organic matter, no significant difference was observed, similar to what occurred in the carcass traits and nutritional quality of the meat. The inclusion of 8000 XU/kg of xylanase enzyme provided the best values of apparent digestibility of total tract protein and dry matter on the finished stage of rabbits.


Assuntos
Triticale , Animais , Coelhos , Melhoramento Vegetal , Dieta/veterinária , Suplementos Nutricionais , Carne
2.
BMC Plant Biol ; 24(1): 223, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539072

RESUMO

BACKGROUND: Triticale is making its way on dairy farms as an alternative forage crop. This requires the availability of high-yielding triticale varieties with good digestibility. Triticale forage breeding mainly focussed on biomass yield, but efforts to improve digestibility are increasing. We previously investigated the interrelationships among different quality traits in soft dough triticale: starch, acid detergent fibre and in vitro digestibility of organic matter (IVOMD) and of neutral detergent fibre (IVNDFD) of the total plant, IVNDFD and Klason lignin of the stems, and ear proportion and stem length. Here we determine the genetic control of these traits, using a genome-wide association (GWAS) approach. A total of 33,231 DArTseq SNP markers assessed in a collection of 118 winter triticale genotypes, including 101 varieties and 17 breeding lines, were used. RESULTS: The GWAS identified a total of 53 significant marker-trait associations (MTAs). The highest number of significantly associated SNP markers (n = 10) was identified for total plant IVNDFD. A SNP marker on chromosome 1A (4211801_19_C/T; 474,437,796 bp) was found to be significantly associated with ear proportion, and plant and stem IVNDFD, with the largest phenotypic variation for ear proportion (R²p = 0.23). Based on MTAs, candidate genes were identified which were of particular relevance for variation in in vitro digestibility (IVD) because they are putatively involved in plasma membrane transport, cytoskeleton organisation, carbohydrate metabolic processes, protein phosphorylation, and sterol and cell wall biogenesis. Interestingly, a xyloglucan-related candidate gene on chromosome 2R, SECCE2Rv1G0126340, was located in close proximity of a SNP significantly associated with stem IVNDFD. Furthermore, quantitative trait loci previously reported in wheat co-localized with significantly associated SNP markers in triticale. CONCLUSIONS: A collection of 118 winter triticale genotypes combined with DArTseq SNP markers served as a source for identifying 53 MTAs and several candidate genes for forage IVD and related traits through a GWAS approach. Taken together, the results of this study demonstrate that the genetic diversity available in this collection can be further exploited for research and breeding purposes to improve the IVD of triticale forage.


Assuntos
Estudo de Associação Genômica Ampla , Triticale , Detergentes , Melhoramento Vegetal , Fenótipo
3.
Plant Cell Rep ; 43(3): 59, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329578

RESUMO

KEY MESSAGE: The first-time generation of hexaploid triticale plants harbouring variable panels of novel mutations in gene families involved in starch biosynthesis has been achieved by the subgenome-independent multiplexed CRISPR/Cas9-mediated editing.


Assuntos
Sistemas CRISPR-Cas , Triticale , Sistemas CRISPR-Cas/genética , Mutagênese/genética
4.
J Appl Genet ; 65(2): 271-281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353850

RESUMO

Triticale (X Triticosecale Wittmack), a wheat-rye small grain crop hybrid, combines wheat and rye attributes in one hexaploid genome. It is characterized by high adaptability to adverse environmental conditions: drought, soil acidity, salinity and heavy metal ions, poorer soil quality, and waterlogging. So that its cultivation is prospective in a changing climate. Here, we describe RGB on-ground phenotyping of field-grown eighteen triticale market-available cultivars, made in naturally changing light conditions, in two consecutive winter cereals growing seasons: 2018-2019 and 2019-2020. The number of ears was counted on top-down images with an accuracy of 95% and mean average precision (mAP) of 0.71 using advanced object detection algorithm YOLOv4, with ensemble modeling of field imaging captured in two different illumination conditions. A correlation between the number of ears and yield was achieved at the statistical importance of 0.16 for data from 2019. Results are discussed from the perspective of modern breeding and phenotyping bottleneck.


Assuntos
Triticale , Estudos Prospectivos , Melhoramento Vegetal , Grão Comestível/genética , Solo
5.
BMC Plant Biol ; 24(1): 43, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200422

RESUMO

BACKGROUND: The development of the plant in vitro techniques has brought about the variation identified in regenerants known as somaclonal or tissue culture-induced variation (TCIV). S-adenosyl-L-methionine (SAM), glutathione (GSH), low methylated pectins (LMP), and Cu(II) ions may be implicated in green plant regeneration efficiency (GPRE) and TCIV, according to studies in barley (Hordeum vulgare L.) and partially in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927). Using structural equation models (SEM), these metabolites have been connected to the metabolic pathways (Krebs and Yang cycles, glycolysis, transsulfuration), but not for triticale. Using metabolomic and (epi)genetic data, the study sought to develop a triticale regeneration efficiency statistical model. The culture's induction medium was supplemented with various quantities of Cu(II) and Ag(I) ions for regeneration. The period of plant regeneration has also changed. The donor plant, anther-derived regenerants, and metAFLP were utilized to analyze TCIV concerning DNA in symmetric (CG, CHG) and asymmetric (CHH) sequence contexts. Attenuated Total Reflectance-Fourier Transfer Infrared (ATR-FTIR) spectroscopy was used to gather the metabolomic information on LMP, SAM, and GSH. To frame the data, a structural equation model was employed. RESULTS: According to metAFLP analysis, the average sequence change in the CHH context was 8.65%, and 0.58% was de novo methylation. Absorbances of FTIR spectra in regions specific for LMP, SAM, and GSH were used as variables values introduced to the SEM model. The average number of green regenerants per 100 plated anthers was 2.55. CONCLUSIONS: The amounts of pectin demethylation, SAM, de novo methylation, and GSH are connected in the model to explain GPRE. By altering the concentration of Cu(II) ions in the medium, which influences the amount of pectin, triticale's GPRE can be increased.


Assuntos
Hordeum , Triticale , Suplementos Nutricionais , Glutationa , Hordeum/genética , Pectinas , Íons
6.
J Agric Food Chem ; 72(3): 1592-1606, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38198510

RESUMO

Cuticular wax, a critical defense layer for plants, remains a relatively unexplored factor in rumen fermentation. We investigated the impact of cuticular wax on rumen fermentation using triticale as a model. In total, six wax classes were identified, including fatty acids, aldehydes, alkane, primary alcohol, alkyresorcinol, and ß-diketone, with low-bloom lines predominated by 46.05% of primary alcohols and high-bloom lines by 35.64% of ß-diketone. Low-wax addition (2.5 g/kg DM) increased the gas production by 19.25% (P < 0.05) and total volatile fatty acids by 6.34% (P > 0.05), and enriched key carbohydrate-fermenting rumen microbes like Saccharofermentans, Ruminococcus, and Prevotellaceae, when compared to non-wax groups. Metabolites linked to nucleotide metabolism, purine metabolism, and protein/fat digestion in the rumen showed a positive correlation with low-wax, benefiting rumen microbes. This study highlights the intricate interplay among cuticular wax, rumen microbiota, fermentation, and metabolomics in forage digestion, providing insights into livestock nutrition and forage utilization.


Assuntos
Microbiota , Triticale , Animais , Rúmen/metabolismo , Triticale/metabolismo , Fermentação , Ceras/metabolismo , Ração Animal/análise
7.
Yi Chuan ; 46(1): 63-77, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38230457

RESUMO

Hexaploid triticale is an important genetic resource for genetic improvement of common wheat, which can broaden the genetic basis of wheat. In order to lay a foundation for the subsequent research and utilization of triticale germplasm materials, the chromosomal genetic characteristics of cross and backcross offspring of hexaploid triticale×hexaploid wheat were investigated in the process of transferring rye chromatin from hexaploid triticale to hexaploid wheat. Hybrid and backcross combinations were prepared with hexaploid triticale 16yin171 as the maternal parent and hexaploid wheat Chuanmai62 as the paternal parent. The chromosomes in root tip cells of F1, BC1F1 and BC1F2 plants were traced and identified non-denaturing florescence in situ hybridization (ND-FISH). The results indicated that the backcross setting rate of hybrid F1 was 2.61%. The transmission frequency of 2R chromosome was the highest in BC1F1 plants while the transmissibility of rye chromosome in BC1F2 plant was 6R>4R>2R, and the 5B-7B wheat translocation in BC1F2 plants showed severe segregation. A total of 24 structural variant chromosomes were observed both in BC1F1 and BC1F2 plants, including chromosome fragments, isochromosomes, translocations, and dicentric chromosomes. In addition, the seed length and 1000-grain weight of some BC1F2 plants were better than that of the hexaploid wheat parent Chuanmai 62. Therefore, multiple backcrosses should be adopted as far as possible to make the rapid recovery of group D chromosomes, ensuring the recovery of fertility in offspring, when hexaploid tritriale is used as a bridge to introduce rye genetic material into common wheat. At the same time, the potential application value of chromosomal structural variation materials should be also concerned.


Assuntos
Triticale , Triticum , Triticum/genética , Triticale/genética , Secale/genética , Cromossomos de Plantas/genética , Hibridização In Situ , Translocação Genética
8.
PeerJ ; 11: e16256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152345

RESUMO

Salinity stress poses a major challenge to agricultural productivity worldwide, and understanding their responses at the early growth stage is vital for devising strategies to cope with this stress. Therefore, to improve triticale productivity, this study investigated the salinity stress tolerance of different salt-tolerant triticale genotypes aiming to cultivate them on saline soils. To this end, salinity stress impacts on nine triticale genotypes, i.e., Zhongsi 1084, Gannong No. 2, Gannong No. 4, Shida No. 1, C6, C16, C23, C25 and C36 at germination and early seedling stages was evaluated. Each genotype was subjected to six treatments inducing control, 40, 80, 120, 160, and 200 mM NaCl treatments to study their effect on seedling and termination traits of the nine genotypes. Compared to the overall mean seedling vigor index, the seedling vigor index was higher in the genotypes Zhongsi 1084 and C6 (39% and 18.1%, respectively) and lower in Gannong No.2 (41%). Increasing NaCl concentrations negatively affected germination and seedling traits. Compared to other genotypes, Zhongsi 1084 had the highest mean germination rate, germination vigor index, germination percentage, mean daily germination and germination energy. It also showed the lowest relative salt injury. The relative salt injury was higher in the genotype Shida No. 1 than those in Gannong No. 2, Gannong No. 4, Shida No. 1, C16, and C36 genotypes. All genotypes exhibited desirable mean germination time except for line C6. High significant positive correlations were observed among germination rate, germination vigor index, germination percentage, mean daily germination, seedling vigor index, and root length. Principal component analysis (PCA) grouped the most desirable genotypes into two clusters. Our study determined salt stress tolerance of nine triticale genotypes at germination and early seedling stages. to select salt-tolerant genotypes that can be cultivated on saline soil or after salt irrigation.


Assuntos
Plântula , Triticale , Plântula/genética , Germinação/genética , Cloreto de Sódio/farmacologia , Solo , Genótipo
9.
Int J Biol Macromol ; 253(Pt 6): 127384, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838124

RESUMO

Three enzymes promoted the development of the gluten network in triticale whole-wheat noodles (TWWN). To further understand the mechanism of gluten enhancement, the effects of three enzymes on the structure of gluten and its fractions (gliadin and glutenin) were evaluated. The results showed that glucose oxidase (GOD), xylanase (XYL), and laccase (LAC) decreased the content of sodium dodecyl sulfate (SDS) extractable proteins. The content of glutenin subunits was reduced by 17.25 %, 30.60 %, and 20.09 % with the addition of GOD, XYL, and LAC, respectively. Furthermore, GOD and LAC increased the content of glutenin macropolymer (GMP) by 2.64 % and 7.71 %, respectively, suggesting the promotion of glutenin aggregation. The addition of three enzymes decreased the weight loss and increased the degradation temperature of the gluten and its fractions. GOD and XYL decreased the fluorescence intensity of gluten and its fractions, except for XYL which increased the fluorescence intensity of glutenin by 10.50 %. Intermolecular interactions and surface hydrophobicity were enhanced by XYL in gluten and its fractions. GOD and LAC decreased the free sulfhydryl content and increased the ß-sheet content, suggesting that the covalent interaction between gluten fractions was enhanced. Therefore, this research can enrich the theoretical study of enzymatic cross-linking.


Assuntos
Gliadina , Triticale , Gliadina/química , Triticum/química , Farinha , Glutens/química , Glucose Oxidase/metabolismo , Lacase/metabolismo
10.
PeerJ ; 11: e15772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551342

RESUMO

Background: Triticale (×Triticosecale Wittmack L.), rye (Secale cereale L.), and oat (Avena sativa L.) are the main forage crops on the Qinghai-Tibet Plateau, but there has been relatively little research on the silage produced from these three species. Methods: Plants were harvested at the heading, flowering, grouting, milky, and dough stages and then used to produce silage with and without additives (Sila-Max and Sila-Mix). The nutritional quality of the resulting silages was analyzed. Results: Triticale was revealed to be more suitable than oat or rye for producing silage on the Qinghai-Tibet Plateau. On the basis of the dry matter yield (DMY), triticale and rye should be harvested at the milky stage to optimize silage quality, whereas oat should be harvested at the dough stage. The lactic acid bacteria additives Sila-Max and Sila-Mix had no significant effect on the nutritional quality of the three silages regardless of when the samples were harvested. Overall, triticale produced higher quality silage than oat or rye. More specifically, triticale variety 'Gannong No.2' harvested at the milky stage is ideal for silage production.


Assuntos
Lactobacillales , Triticale , Silagem/análise , Secale , Avena , Tibet , Valor Nutritivo
11.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569877

RESUMO

Widely used agrochemicals that do not exert negative effects on crops and selectively target weeds could influence plant resilience under unfavorable conditions. The cross-adaptation of wheat (Triticum aestivum L.) and triticale (×Triticosecale Wittm.) exposed to two environmental abiotic stressors (drought and waterlogging) was evaluated after treatment with a selective herbicide (Serrate®, Syngenta). The ambivalent effects of the herbicide on the two studied crops were particularly distinct in waterlogged plants, showing a significant reduction in wheat growth and better performance of triticale individuals exposed to the same combined treatment. Histochemical staining for the detection of reactive oxygen species (ROS) confirmed that the herbicide treatment increased the accumulation of superoxide anion in the flooded wheat plants, and this effect persisted in the younger leaves of the recovered individuals. Comparative transcript profiling of ROS scavenging enzymes (superoxide dismutase, peroxidase, glutathione reductase, and catalase) in stressed and recovered plants revealed crop-specific variations resulting from the unfavorable water regimes in combination with the herbicide treatment. Short-term dehydration was relatively well tolerated by the hybrid crop triticale and this aligned with the considerable upregulation of genes for L-Proline biosynthesis. Its drought resilience was diminished by herbicide application, as evidenced by increased ROS accumulation after prolonged water deprivation.


Assuntos
Herbicidas , Triticale , Humanos , Antioxidantes/farmacologia , Triticum , Espécies Reativas de Oxigênio/farmacologia , Herbicidas/farmacologia , Secas
12.
Sci Rep ; 13(1): 8896, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264097

RESUMO

Salinity and drought are two major abiotic stresses challenging global crop production and food security. In this study, the effects of individual and combined effects of drought (at different phenological stages) and salt stresses on growth, morphology, and physiology of triticale were evaluated. For this purpose, a 3 x 4 factorial design in three blocks experiment was conducted. The stress treatments included three levels of salinity (0, 50, and 100 mM NaCl) and four levels of drought (regular irrigation as well as irrigation disruption at heading, flowering, and kernel extension stages). The stresses, individual as well as combined, caused a significant decrease in chlorophyll contents, total dry matter, leaf area index, relative water content, and grain yield of triticale. In this regard, the highest reduction was recorded under combined stresses of 100 mM NaCl and drought stress at flowering. However, an increase in soluble sugars, leaf free proline, carotenoid contents, and electrolyte leakage was noted under stress conditions compared to the control. In this regard, the highest increase in leaf free proline, soluble sugars, and carotenoid contents were noted under the combination of severe salinity and drought stress imposed at the flowering stage. Investigating the growth indices in severe salinity and water deficit stress in different phenological stages shows the predominance of ionic stress over osmotic stress under severe salinity. The highest grain yield was observed under non-saline well-watered conditions whereas the lowest grain yield was recorded under severe salinity and drought stress imposed at the flowering stage. In conclusion, the flowering stage was more sensitive than the heading and kernel extension stages in terms of water deficit. The impact of salinity and water deficit was more pronounced on soluble sugars and leaf free proline; so, these criteria can be used as physiological indicators for drought and salinity tolerance in triticale.


Assuntos
Cloreto de Sódio , Triticale , Cloreto de Sódio/farmacologia , Secas , Estresse Salino , Carotenoides , Desidratação , Água , Prolina , Açúcares
13.
Arch Anim Nutr ; 77(3): 187-204, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37222576

RESUMO

The current study aimed to investigate the effect of supplementing an emulsifier, xylanase or a combination of both on the growth performance, digestibility of nutrients, microflora activity and intestinal morphology in broiler chickens fed triticale-based diets. A total of 480 one-day-old male Ross 308 broiler chicks were randomly assigned to four dietary treatments: control (CON), control with an added emulsifier (EMU), control with added xylanase (ENZ) and control with emulsifier and xylanase (EMU+ENZ). Xylanase supplemented groups had diminished feed intake (FI) and enhanced body weight gain (BWG) only within the starter period (p ≤ 0.05), while the feed conversion ratio (FCR) in the ENZ and ENZ+EMU groups was lower than CON during the whole experiment period. There was significant ENZ and EMU interaction in apparent metabolisable energy corrected to N equilibrium (AMEN) as well as NDF and DM retention. The viscosity of ileum digesta was the lowest in groups with enzyme addition. Interactions show that caecal galactosidase-α activity was higher in the CON group compared to EMU supplementation, but similar to ENZ and EMU+ENZ (p < 0.05). Activity of glucosidase-α was higher in the CON group related to inclusion of EMU or ENZ alone (p < 0.05) but did not differ from the combined supplementation of EMU+ENZ, whereas the glucosidase-ß activity was higher in the CON group compared to all supplemented diets (p < 0.05). Caecal C2 concentration was greater in the CON group than supplemented diets (p < 0.05). The expression of FATP1, PEPT1 and SGLT1 in the ileum was downregulated after emulsifier addition (p ≤ 0.05). The addition of emulsifier and xylanase indicates a mutual effect on broiler chickens' performance and nutrient digestibility in triticale diets with palm oil during the first nutritional period. Additionally, concomitantly additives usage influenced intestinal microbiome activity, as well.


Assuntos
Dieta , Triticale , Animais , Masculino , Dieta/veterinária , Galinhas , Endo-1,4-beta-Xilanases/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Glucosidases/metabolismo , Glucosidases/farmacologia , Digestão , Fenômenos Fisiológicos da Nutrição Animal
14.
FEMS Microbiol Ecol ; 99(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36918203

RESUMO

Currently, our understanding of the effects of glaucousness on the population sizes of microbial communities on leaf surfaces is limited. The objective of this study was to investigate the influence of glaucousness and chemical composition on the colony-forming unit (CFU) counts of microbes on leaf surfaces. Various leaf morphological and physicochemical features, microbial CFU counts and glaucousness on the leaf surfaces of wheat (Triticum aestivum var. Shimai No.1), rye (Secale cereale var. Gannong No.1) and triticale (Triticale wittmack var. Gannong No.2) were assessed. The results showed that larger CFU counts of lactic acid bacteria (LAB) and yeasts were found on the non-glaucous leaf surfaces in wheat than on the glaucous leaf surfaces in rye and triticale. The CFU counts of LAB and yeasts were negatively correlated with the amount of soluble wax (P < 0.05), and positively correlated with the contents of starch and fructose in leaf tissue (P < 0.05), soluble and reduced sugars, soluble protein and free amino acids on leaf surfaces (P < 0.05). The CFU counts of microbes on leaf surfaces were mainly influenced by the level of available carbon sources and glaucousness of leaf surfaces.


Assuntos
Grão Comestível , Triticale , Triticum , Secale , Folhas de Planta
15.
J Proteomics ; 278: 104867, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870675

RESUMO

Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.


Assuntos
Proteoma , Triticale , Proteoma/metabolismo , Pólen/metabolismo , Poaceae , Alérgenos/metabolismo , Polinização , Flores/metabolismo , Tubo Polínico
16.
Ecotoxicol Environ Saf ; 249: 114356, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508799

RESUMO

Lead (Pb2+) pollution in the soil sub-ecosystem has been a continuously growing problem due to economic development and ever-increasing anthropogenic activities across the world. In this study, the photosynthetic performance and antioxidant capacity of Triticeae cereals (rye, wheat and triticale) were compared to assess the activities of antioxidants, the degree of oxidative damage, photochemical efficiency and the levels of photosynthetic proteins under Pb stress (0.5 mM, 1 mM and 2 mM Pb (NO3)2). Compared with triticale, Pb treatments imposed severe oxidative damage in rye and wheat. In addition, the highest activity of major antioxidant enzymes (SOD, POD, CAT, and GPX) was also found to be elevated. Triticale accumulated the highest Pb contents in roots. The concentration of mineral ions (Mg, Ca, and K) was also high in its leaves, compared with rye and wheat. Consistently, triticale showed higher photosynthetic activity under Pb stress. Immunoblotting of proteins revealed that rye and wheat have significantly lower levels of D1 (photosystem II subunit A, PsbA) and D2 (photosystem II subunit D, PsbD) proteins, while no obvious decrease was noticed in triticale. The amount of light-harvesting complex II b6 (Lhcb6; CP24) and light-harvesting complex II b5 (Lhcb5; CP26) was significantly increased in rye and wheat. However, the increase in PsbS (photosystem II subunit S) protein only occurred in wheat and triticale exposed to Pb treatment. Taken together, these findings demonstrate that triticale shows higher antioxidant capacity and photosynthetic efficiency than wheat and rye under Pb stress, suggesting that triticale has high tolerance to Pb and could be used as a heavy metal-tolerant plant.


Assuntos
Chumbo , Estresse Oxidativo , Complexo de Proteína do Fotossistema II , Secale , Poluentes do Solo , Triticale , Triticum , Ecossistema , Chumbo/toxicidade , Secale/efeitos dos fármacos , Secale/enzimologia , Triticale/efeitos dos fármacos , Triticale/enzimologia , Triticum/efeitos dos fármacos , Triticum/enzimologia , Poluentes do Solo/toxicidade
17.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232406

RESUMO

Rye (Secale cereale) is a climate-resilient cereal grown extensively as grain or forage crop in Northern and Eastern Europe. In addition to being an important crop, it has been used to improve wheat through introgression of genomic regions for improved yield and disease resistance. Understanding the genomic diversity of rye will assist both the improvement of this crop and facilitate the introgression of more valuable traits into wheat. Here, we isolated and sequenced the short arm of rye chromosome 7 (7RS) from Triticale 380SD using flow cytometry and compared it to the public Lo7 rye whole genome reference assembly. We identify 2747 Lo7 genes present on the isolated chromosome arm and two clusters containing seven and sixty-five genes that are present on Triticale 380SD 7RS, but absent from Lo7 7RS. We identified 29 genes that are not assigned to chromosomal locations in the Lo7 assembly but are present on Triticale 380SD 7RS, suggesting a chromosome arm location for these genes. Our study supports the Lo7 reference assembly and provides a repertoire of genes on Triticale 7RS.


Assuntos
Secale , Triticale , Cromossomos de Plantas/genética , Resistência à Doença/genética , Grão Comestível/genética , Secale/genética , Triticale/genética , Triticum/genética
18.
PLoS One ; 17(9): e0274588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174006

RESUMO

Salinity is a major abiotic stress affecting cereal production. Thus, tritipyrum (x. Tritipyrum), a potential novel salt-tolerant cereal, was introduced as an appropriate alternative for cereal production. The purposes of this study were to evaluate agronomic traits, yield, and yield stability of eight primary tritipyrum lines, five promising triticale lines, and four bread wheat varieties and to screen a stable yielding line. The experiments were conducted in randomized complete block designs with three replicates in three locations during four growing seasons. Analysis of variance in each environment and Bartlett's test for the variance homogeneity of experimental errors were made. Subsequently, separate experiments were analyzed as a combined experiment. The stability of grain yield was analyzed according to Eberhart and Russell's regression method, environmental variance, Wrick's ecovalance, Shokla's stability variance, AMMI, and Tai methods. Genotype × environment interactions (GEI) and environments were significant for the agronomic traits. Stability analysis revealed that combined primary tritipyrum line (Ka/b)(Cr/b)-5 and triticale 4115, 4108, and M45 lines had good adaptability in all environments. The results of the AMMI3 model and pattern analysis showed that the new cereal, tritipyrum, had the most stable response in various environments. The tritipyrum line (Ka/b)(Cr/b)-5 had the best yield performance and general adaptability. Based on Tai's method, the contribution of spike number to the stability of grain yield over different environments was higher than that of other yield components. Also, tritipyrum lines demonstrated higher stability compared with wheat and triticale. Totally, M45 triticale and tritipyrum (Ka/b)(Cr/b)-5 lines were the most stable genotypes with high grain yield. Complementary agronomic experiments may then release a new grain crop of triticale and a new pasture line of combined primary tritipyrum for grain and forage. Moreover, the combined tritipyrum line can be used in bread wheat breeding programs for producing salt-tolerant wheat cultivars.


Assuntos
Pão , Triticale , Grão Comestível/genética , Melhoramento Vegetal , Triticale/genética , Triticum/genética
19.
Cells ; 11(17)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36078107

RESUMO

The biological improvement of triticale, a cereal of increasing importance in agriculture, may be accelerated via the production of doubled haploid lines using in vitro culture. Among the relevant factors affecting the culture efficiency are Cu(II) or Ag(I) acting, e.g., as cofactors of enzymes. The copper ions are known to positively affect green plant regeneration efficiency. However, the biochemical basis, mainly its role in the generation of in vitro-induced genetic and epigenetic variation and green plant regeneration efficiency, is not well understood. Here, we employed structural equation modeling to evaluate the relationship between de novo DNA methylation affecting the asymmetric context of CHH sequences, the methylation-sensitive Amplified Fragment Length Polymorphism related sequence variation, and the concentration of Cu(II) and Ag(I) ions in induction media, as well as their effect on S-adenosyl-L-methionine perturbations, observed using FTIR spectroscopy, and the green plant regeneration efficiency. Our results allowed the construction of a theory-based model reflecting the biological phenomena associated with green plant regeneration efficiency. Furthermore, it is shown that Cu(II) ions in induction media affect plant regeneration, and by manipulating their concentration, the regeneration efficiency can be altered. Additionally, S-adenosyl-L-methionine is involved in the efficiency of green plant regeneration through methylation of the asymmetric CHH sequence related to de novo methylation. This shows that the Yang cycle may impact the production of green regenerants.


Assuntos
S-Adenosilmetionina , Triticale , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Metionina/genética , Metilação , S-Adenosilmetionina/metabolismo , Triticale/genética , Triticale/metabolismo
20.
J Appl Genet ; 63(4): 663-675, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35984629

RESUMO

Somatic embryogenesis is a plant regeneration method that can be exploited in tissue culture systems for a variety of tasks, such as genetic modification or the selection of somaclones with advantageous characteristics. Therefore, it is crucial to create efficient regeneration procedures and comprehend how medium components affect regeneration effectiveness or the degree of variation created in plant tissue cultures. The level of tissue culture-induced variation in triticale regenerants was examined in the current study in relation to the concentration of copper and silver ions in the induction media as well as the length of time immature zygotic embryo explants were incubated on these media. The high degree of variation (45%) revealed by the methylation-sensitive amplified fragment length polymorphism approach for estimating variation included 38% DNA sequence alterations, 6% DNA demethylation, and 1% de novo DNA methylation. Different levels of variance were found in relation to various DNA sequence settings. The CHG context had the most alterations, whereas CG experienced the fewest; sequence variation predominated in each sequence context. Lower copper ion concentrations showed the most variance. However, it could not be connected to the duration of in vitro culture or the effect of silver ions. Accordingly, we think that altering the concentration of copper ions in the induction medium may throw off the equilibrium of the metabolic processes in which copper is involved, resulting in tissue culture-induced variation.


Assuntos
Metilação de DNA , Triticale , Triticale/genética , Cobre/toxicidade , Prata/farmacologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Desenvolvimento Embrionário , Regeneração , Íons/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...